4 Awesome Recommendations on Deepseek From Unlikely Sources
페이지 정보
작성자 Samara Getty 작성일25-02-03 12:21 조회2회 댓글0건관련링크
본문
DeepSeek, an organization based in China which aims to "unravel the mystery of AGI with curiosity," has released DeepSeek LLM, a 67 billion parameter model educated meticulously from scratch on a dataset consisting of two trillion tokens. However, The Wall Street Journal stated when it used 15 problems from the 2024 edition of AIME, the o1 model reached an answer sooner than DeepSeek-R1-Lite-Preview. Shao et al. (2024) Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, M. Zhang, Y. Li, Y. Wu, and D. Guo. Shi et al. (2023) F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei. Suzgun et al. (2022) M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou, et al. Shazeer et al. (2017) N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean. Vaswani et al. (2017) A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Lepikhin et al. (2021) D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
Qi et al. (2023a) P. Qi, X. Wan, G. Huang, and M. Lin. Peng et al. (2023a) B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Touvron et al. (2023a) H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Touvron et al. (2023b) H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Thakkar et al. (2023) V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan, J. Kosaian, M. Hoemmen, H. Wu, A. Kerr, M. Nicely, D. Merrill, D. Blasig, F. Qiao, P. Majcher, P. Springer, M. Hohnerbach, J. Wang, and M. Gupta.
Su et al. (2024) J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Luo et al. (2024) Y. Luo, Z. Zhang, R. Wu, H. Liu, Y. Jin, K. Zheng, M. Wang, Z. He, G. Hu, L. Chen, et al. Xia et al. (2023) H. Xia, T. Ge, P. Wang, S. Chen, F. Wei, and Z. Sui. Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan. Li et al. (2024b) Y. Li, F. Wei, C. Zhang, and H. Zhang. Li et al. (2021) W. Li, F. Qi, M. Sun, X. Yi, and J. Zhang. Sun et al. (2019b) X. Sun, J. Choi, C.-Y. Sun et al. (2019a) K. Sun, D. Yu, D. Yu, and C. Cardie. GGUF is a new format launched by the llama.cpp team on August 21st 2023. It's a replacement for GGML, which is now not supported by llama.cpp. Absolutely outrageous, and an unbelievable case study by the research group. Rewardbench: Evaluating reward fashions for language modeling. For my first release of AWQ models, I am releasing 128g models solely.
The first downside that I encounter during this project is the Concept of Chat Messages. "Our fast objective is to develop LLMs with strong theorem-proving capabilities, aiding human mathematicians in formal verification projects, such because the current venture of verifying Fermat’s Last Theorem in Lean," Xin stated. Not solely that, StarCoder has outperformed open code LLMs just like the one powering earlier versions of GitHub Copilot. This is cool. Against my non-public GPQA-like benchmark free deepseek v2 is the precise finest performing open source model I've examined (inclusive of the 405B variants). Take a look at the leaderboard here: BALROG (official benchmark site). Deepseek’s official API is suitable with OpenAI’s API, so simply need to add a brand new LLM under admin/plugins/discourse-ai/ai-llms. If you’re trying to do this on GPT-4, which is a 220 billion heads, you need 3.5 terabytes of VRAM, which is forty three H100s. All you need is a machine with a supported GPU.
If you treasured this article and you also would like to receive more info concerning ديب سيك nicely visit our web page.
댓글목록
등록된 댓글이 없습니다.